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Abstract

Within the scope of the computing science studies I currently follow at Polytech Grenoble, I carried out
a twelve weeks long internship in the Laboratory Jean Kuntzmann (LJK), which offers me the possibility
to combine both Information Technologies (IT) and mathematics strengths. This report shows the work
done during this internship, detailling technologies I learned or improved as well as the methods used to
carry out the mission that was entrusted to me : to create an application which can analyse the temperature
variations of a heat sink, depending on its dimensions, materials and components it is made of.

To perform such a task, I developed an application which enables a total parametrization of CPU’s heat
sinks and also worked on the FEEL++ library, a C++ library for solving partial differential equations using
the finite element method. This method is explained further in this document with a student point of vue,
which has the advantage to go to the basics and gives the key to the understanding of the chosen solutions.

Résumé

Dans le cadre de ma formation d’ingénieur RICM à Polytech Grenoble, j’ai effectué un stage de douze se-
maines au sein du laboratoire Jean Kuntzmann à Grenoble. Ce rapport rend compte des différents travaux
auxquels j’ai pu participer pendant cette période. Tout d’abord, le large éventail de compétences que pro-
pose le LJK m’a tout de suite attiré car je savais que j’y aurais la possibilité de combiner les sciences
de l’informatique avec la puissance des mathématiques. J’ai notamment travaillé sur la librairie FEEL++
qui est une librairie développée en C++ qui permet de résoudre les équations aux dérivées partielles par la
méthode des éléments finis. Cette méthode est, entre les autres outils présentés ici, abordée avec le regard
d’un étudiant, ce qui a l’avantage d’aller directement aux fondamentaux et de donner les clés pour la bonne
compréhension des problèmes rencontrés.

Outre les différents travaux sur la documentation et le tutoriel, j’ai été ammené à réaliser une applica-
tion complète. Pour ce faire, j’ai mis en place une application qui a pour but de simuler la dissipation
de chaleur entre microprocesseurs et dissipateur de chaleur. Ce simulateur permet donc une paramétrisa-
tion complète du problème, vous pourrez analyser les variations de température avec différents matériaux,
ventilateurs, dimensions ou flux de chaleurs imposés. En plus de la refonte partielle de la documentation
distribuée avec la librairie, j’ai également apporté quelques améliorations quant à la prise en compte des
différents formats pour les maillages sur lesquels les calculs sont effectués.

Ce rapport montre le travail réalisé durant mon stage, en détaillant les technologies que j’ai pu appren-
dre ou améliorer mais aussi les méthodes employées pour mener à bien la mission qui m’a été confiée.

3



Acknowledgment

I would especially thank Mr Prud’homme, my internship master, who gave me the opportunity to make my
2nd year ingeneer internship at Laboratory Jean Kuntzmann. Altought mainly based in Strasbourg while
the internship took place in Grenoble, he has been able to direct me properly and most of all succeed in
trusting me. Despite his heavy schedule, my questions would be answered within a short time. His man-
agement was exemplary and has greatly contributed to the smooth functioning of my internship.

I also would like to thank Mr Veys, my internship supervisor and day-to-day interlocutor. He has always
been available even if he is currently carrying out a thesis on multiscale methods. He has known how to
help me and answered all the questions I could have have about mathematical theories.

I would thank Mrs Duval who was able to ensure the smooth running of my internship.

Finally, I would thank the Joseph Fourier University, Polytech Grenoble and the RICM department to make
my internship at Jean Kuntzmann laboratory possible.

4



CHAPTER 1

The laboratory and the project

1.1 Introduction

The Laboratory Jean Kuntzmann is named after Jean Kuntzmann (1912-1992), a precusor in applied math-
ematics and informatics in Grenoble. Established in the city in January 2007, the LJK is an Applied
Mathematics and Computer Science laboratory. Joint research unit of the UJF, the INPG, the UPMF, the
CNRS and the INRIA, it combines the strengths of applied mathematicians and statisticians from the for-
mer laboratories LMC and LabSAD with graphics and computer vision experts from the former laboratory
GRAVIR. Its expertise is focus on the computational and statistical sciences and their uses in analysing
natural phenomena, with applications ranging from environmental modelling to mathematical finance.

1.2 Departments

The laboratory is structured into three scientific departments, each containing a number of research teams :

• Geometry and Images
The Geometry-Image department conducts research in Geometric Design, Image Analysis, Com-
puter Graphics and Computer Vision. The common framework of the research is the computer
processing of geometry and images. Applications include Computer Aided Design systems for the
manufacturing industry, the creation of animation movies for the leisure industry, or the indexation
and mining of large image databases for the Information and Communication Technologies. This
rare combination of computer sciences expertise in image synthesis and analysis, vision and geome-
try is the ideal blending for the development of innovative research towards a complete insertion of
3D geometry and images in the Information Society.

• Probability and Statistics
The activities of the Department of Probability and Statistics are centered around probability, statis-
tics, financial mathematics and image and signal processing. The Department is constituted of six
research teams.
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• Deterministic Models and Algorithms
The activities of the MAD members are centered around the design and implementation of numerical
and symbolic tools for the resolution of ODE’s (Ordinary Differential Equations) and PDE’s (Partial
Differential Equations), with applications to control and optimization problems. I was attached to
the PDE team regarding the goal of the library I have worked on which is detailed below.

1.3 The FEEL++ library

1.3.1 Points of interest

FEEL++ (formerly known as Life) is a C++ library for the Finite Element Method and is actually suitable
for generalized Galerkin methods in 1D, 2D and 3D. The library supports nodal and modal basis at any
order in the three dimensions.

The library is the fruit of a collaboration between three universities which are Université Joseph Fourier
(Grenoble, France), Ecole Polytechnique Fédérale de Lausanne (Switzerland) and University of Coimbra
(Portugal). It is a free software and is distributed under GNU General Public License (GPL).

FEEL++ is currently supported by two ANR (French National Research Agency) and one FNRAE (Re-
search Foundation for Aviation and Space) projects. It is also supported by the region Rhônes-Alpes thanks
to the cluster ISLE and CHPID project since 2009.

1.3.2 Two aspects

While I was seeking for an internship, the combination of two main aspects of FEEL++ have motivated my
choice : mathematics and computer sciences skills I would have to improve in order to reach out the aim
of this internship. This is a positive opportunity because it represents two of the essential skills that have
to be part of an engineer’s spectrum.

The mathematical point is obvious because it’s the main goal of FEEL++ but solving such big equations
requires powerful computers. What is interesting is that FEEL++ is not specifically intended to clusters or
calculators but also to simple users who own personal computers.

To make it possible, the library takes advantage of C++ language : the developers could build the library
with powerful tools such as BOOST, PETSC or SLEPC which enable a huge backend for huge memory
needs or enormous mathematical calculations. Here is a short description of these powerful tools used by
FEEL++.

BOOST
This important library provides free peer-reviewed portable C++ source libraries. The BOOST libraries
aimed a wide range of C++ users and applications domain. They range from general purpose libraries to
operating system abstractions. BOOST make extensive use of templates, it has been a source of extensive
work and research into generic programming and metaprogramming in C++ . We use in FEEL++ many of
its libraries such as shared_ptr, numeric or timer. With the shared_ptr library, each entity (such as
matrix, vector, mesh, and so on) can be accessed thanks to a shared pointer. This structure is not as simple
as the well-known pointers in C programs. A shared pointer stores a pointer to dynamically allocated
object, typically with a C++ new expression. This guarantee that the pointed object will be deleted when
the last shared pointer pointing to it is destroyed or reseted.

PETSC
PETSC stands for Portable Extensible Toolkit for Scientific Computation and is a suite of data structures
and routines for the parallel solution of scientific applications modeled by partial differential equations. It
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employes the MPI standard for parallelism. Each FEEL++ application owns a PETSC backend to optimize
the solution calculation.

SLEPC
SLEPC stands for Scalable Library for Eigenvalue Problem Computations and is a software library for the
solution of large scal sparse eigenvalue problems on parallel computers. It is an extension of PETSC which
can be used for standar or generalized eigenproblems with real or complex arithmetic.

1.4 The project

The main author of the project is my internship tutor Christophe Prud’homme, who started to build the
library in September 2004.

The project is under Subversion and is hosted on forge.imag.fr which is a collaboration plateform
shared between several laboratories in Grenoble. Actually the current version is 0.91.0 and the deposit
version is the 7436th thanks to all commits and add that the developers have done. FEEL++ is currently
developed by 9 people including a six months trainee and myself.

My internship would be focused on 3 key parts: learn the finite element method, improve the entire manual
and build an application with the library. From the start, we had build a Grantt chart in order to monitor my
work’s progress. The estimated is given in the appendices on page 29. In practise, the "specific tools" part
has been dropped to make a full parametrized application. To be able to work properly on the library, I first
had to appropriate myself the finite element method. This method is explained in the following section.
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CHAPTER 2

Finite Elementh Method

All mathematical notions and definitions employed in this chapter are available in the appendices on page
22.

2.1 Introduction

A differential equation or a partial differential equation owns inifinite solutions. To get only one, you have
to solve the limits issue which means to impose boundary conditions.

Limits issues are differential problems which are set on an open interval with several dimensions Ω ⊂ Rk
(k = 1, 2 or 3) where values of the unknown or its derivatives are attached to the end a and b (or on the
edge ∂Ω in the multidimensional case). However, define only one boundary conditions (on the derivatives
for example) is sometimes not enough to get the uniqueness. Here are some classical equations of limits
issues (the bondaries conditions are noted BC here and are described in 2.1):

• Poisson’s equation {
−∆u = f in Ω

+ BC
(2.1)

where f is a known-function and ∆ is the laplacian.

• Heat equation {
∂T

∂t
−D(T )∆T = 0 in Ω

+ BC
(2.2)

where Ω is a domain of Rn (n=1, 2 or 3), ∂Ω its edge, D is the thermal diffusivity’s coefficient
depending on T , ∇ the nabla operator and finally ~n the unit normal vector at the x point.

• Wave equation  ∂2u(x, t)

∂t2
− c∆u(x, t) = 0, ∀x ∈ Ω, ∀t > 0

+ BC
(2.3)

where c is a positive constant.
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To obtain the uniqueness of those equations, boundary conditions have to be fixed. These conditions
make values specification that the solution has to verifiy on the domain’s edge possible. The solution’s
uniqueness relies on correct boundaries conditions. Furthers boundaries conditions are possible, let’s see
the well-known conditions: Dirichlet, Neumann and Robin.

Boundaries conditions
One of the simplest one is the Dirichlet’s condition: it refers directly to the function we are interested in (u
for example). Take a look at some Dirichlet’s conditions above :

• Dirichlet’s conditions
A classical non-homogeneous could look like

u = g on ∂Ω

To obtain a homogeneous Dirichlet’s condition, you will obtain it with g = 0 which leads to

u = 0 on ∂Ω

Another well-known boundary condition is the Neumann’s condition. It refers to values that solution’s
derivatives must verify on the domain’s borders (often with gradient, for example ~∇u · ~n = g).

• Neumann’s condition
A non-homogeneous condition with Neumann is such as

κ~∇u · ~n = g on ΓN

and a homogeneous Neumann’s condition would give

κ~∇u · ~n = 0 on ΓN

Another well-known is a combination of the two others : the Robin’s condition (for example u+ ~∇u·~n = g
on ∂Ω).

2.2 General example

The finite elements method, on which is based the FEEL++ library, is used to numerically solve partial
differential equation. The resolution of such equations makes the representation of complex system’s dy-
namic behavior possible.

Let’s considerate the equation to solve with boundary conditions where u ∈ Ω is the unknown −∆u = f
u = uD on ΓD

∇u.n = g on ΓN

(2.4)

where Γ = ΓD ∪ ΓN is the border of Ω. By integrating by parts with a test function (called v) supposed
picewise regular, we obtain :∫

Ω

∇u · ∇v −
∫

Γ

(∇u · n)v =

∫
Ω

fv u ∈ Ω ∀v ∈ VΓD

We have u = uD on ΓD, we consequently take v = 0 on ΓD and we got:∫
Ω

∇u · ∇v −
∫

ΓN

gv =

∫
Ω

fv u ∈ Ω ∀v ∈ VΓD

where VΓD
= {v ∈ H1(Ω), v = 0 on ΓD} with f and g which are known functions belonging to C0(Ω).
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2.3 Notions

2.3.1 Mesh

A mesh represents the spatial discretization of a continous domain. Its goal is to simplify a system with
a model representing this system in view of simulations or graphical representations. Each calculation
launched on a mesh requires boundary condition and parameters to respect checking. The finite element
method relies on space’s division with a mesh, it allows us a non-regular mesh (the step of the mesh is
not constant). As a consequence, it enables us to tighten this mesh around the interests points. The more
fine the mesh will be, the more precise the approached solution will be. The mesh is at the basis of the
implementation of the method (after making the mathematical analysis and its writing under variational
form). Create a mesh consists in covering the domaine with geometric elements as accurately as possible.

For example on R and considering Ω =]a, b[ a mesh of Ω is a set of N + 2 points (xi)0≤i≤N+1 such
as x0 = a < x1 < ... < xi < .... < xN < xN+1 = b. The step of the mesh is apparently not regular, that
is to say hi = xi+1 − xi (for a regular step, h = b−a

N+1 ).

2.3.2 Finites elements

Définition

A finite element is a triplet (K̂, Σ̂, P̂ ) such as :

• K̂ is a geometric element of Rn (n = 1, 2 or 3).

• Σ̂ is a set of linear forms (σ̂1f
, ..., σ̂nf

) on P̂ called degrees of freedom.

• P̂ is a finite dimensional vector space of functions defined on K̂.

The dual basis of P̂ (associated to Σ̂ as it’s a set of linear forms) noted (θ̂i)1≤i≤nf
is such as

σ̂i(θ̂j) = δij 1 ≤ i, j ≤ nf
where δij is the Kroneker’s term which is equal to 1 if i = j, 0 else. It is said the triplet (K̂, Σ̂, P̂ ) is
unisolvent, that is to say the function

L : P̂ −→ Rnf

p̂ −→ (p̂(σ̂1, ..., p̂(σ̂Nf
))

is bijective (or, in another way, dim P̂ = card Σ̂ and it exists a unique element p̂ of P̂ such as p(σ̂i) =
αi i = 1, ..., nf ).

Family of finite elements

This notion is necessary to link problem resolution and mesh notion. First of all, it is said that two finite el-
ements (K̂, Σ̂, P̂ ) and (K,Σ, P ) are affine-equivalents if and onfly if it exists an invertible eaffine function
F (where ai are the degrees of freedom) such as

• K = F (K̂)

• ai = F (âi) i = 1, .., N

• P = {p̂ ◦ F−1, p̂ ∈ P̂}

We call then an affine family of finite elements a family where all finite elements are affine-equivalents
to a same finite element (K̂, Σ̂, P̂ ) called the reference element. In practise, work with a family of affine
elements allow us to bring back all the calculations of integrals in calculous on the reference element. The
problem’s unisolvance ensures us that from the reference element, we are able to describe in a unique way
each finite elements of our family.

You can find several examples of such meshes or finite elements’s families in the appendices on page 23.
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Link

Here we would like to establish the link between the resolution with finite elements method and the mesh
by Lagrange’s finite elements. Let’s consider a partial differential equation to solve on a domain Ω with H
the Hilbert’s space in which we are searching for a solution of the variationnal form. Thanks to the unisol-
vence property, the approached solution (which is uh) will be fully defined on each elements (Ki,Σi, Pi)
with its values on the degrees of freedom of the mesh.

By construction, a node will be shared by several adjacent elements. In meshes vocabulary, we say that a
mesh is conform when the intersection between two elements is either empty or reduced to a vertex or an
edge in dimension 2, or a vertex, edge or face in dimension 3. A non-conforming mesh can be handled by
the finite elements method (thanks to Mortar’s method, not described here) but we will prefer working with
conform meshes.

Let’s note a1h
, ..., aNh

thoses degrees of freedom, the approach problem is reduced to determinate the
values of uh at the points ai. Those degrees of freedom will be usefull to build basis functions, because to
each ai is associated a basis vector. That’s that way we define global basis functions ϕi by :

ϕi|Kl
∈ Pk, l = 1, ..., Ne and ϕi(aj) = δi,j , 0 ≤ i, j ≤ Nh

where Ne is cells number, Nh the degrees of freedom number and k is a fixed integer. This basis trully
create Vh which is the inner approximation space. The (ϕi)1≤i≤Nh

are null everywhere, except on the
elements where ai is a node.

2.4 General principle

We have a partial differential equation (PDE) that we have to solve on Ω, with the method describe above
we write this PDE under the variationnal form : we make the scalar product of the equation with a test func-
tion v in the space V to precise and then we integrate by parts the terms of highest degree (this integration
will take account of the boundaries conditions). We obtain the weak formulation :

Find u ∈ Ω such as a(u, v) = l(v), ∀v ∈ V

where a(., .) is a bilinear form on V 2 and l(.) is a linear form on V . Then we make an internal approxima-
tion, so we have to define a mesh of Ω. This mesh is going to define the approximation space Vh (which
is, by construction, a linear subspace of V ). The problem is then equivalent to :

Find uh ∈ Vh such as a(uh, vh) = l(vh), ∀vh ∈ Vh
Now we have to provide a basis (ϕj)1≤j≤Nh

for Vh to decompose any vector of this domain in this basis.
By decomposing uh and vh in this basis and with a’s linearity, the problem is brought to :

Find u1, ..., uNh
such as

Nh∑
i=1

uia(ϕi, ϕj) = l(ϕj) ∀j = 1...Nh

The problem can be delay in matrix, which leads us to this linear system : a(ϕ1, ϕ1) ... a(ϕNh
, ϕ1)

...
...

a(ϕ1, ϕNh
) ... a(ϕNh

, ϕNh
)


 u1

...
uNh

 =

 l(ϕ1)
...

l(ϕNh
)


Finally, the system to be solved is :

Au = b

There are several ways to solve this linear system, even if the matrix A could probably be full. The choice
of the basis (ϕj)1≤j≤N is therefore crucial to make each function ϕj be null except at few meshes. Finally,
the a(ϕi, ϕj) term will be the most of the time null, which will simplify the calculations (in practise, there
will be a "band" on the matrix).
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CHAPTER 3

Building and tutorial

In this section, I will present the different works done on FEEL++ and its manual.

3.1 Build

At the beginning, the tutorial which includes the Build section was a bit outdated. From the time it was
written, furthers things have moved on. So I had to update this part but also add a Mac OS X section.
Indeed, the exlanation was only available for Unix systems. I had just bought a new macbook pro so the
opportunity was too good for me to add this section.

3.1.1 Shape

I started by gaving a "refresh" style to the manual by giving a new structure to make the reading more clear
to any reader. We decided to split the manual into three parts :

• I Tutorial : this part covers the building of the library, how to compile and how to create elementary
applications.

• II Learning by examples : this one shows furthers concrete examples, such as the heat sink applica-
tion I have made.

• III Progamming with FEEL++: this last one aims to present the keywords for programming with the
library.

This work gave me the chance to discover LATEX: a powerfull document markup language and document
preparation system. It also makes me discover CMAKE which is a unified, cross-platfrom, open-source
build system that enables developers to build, test and package softwares by specifying build parameters
in simple and portable text files. This tool can create libraries, generate wrappers, compile source code or
build executables in arbitrary combinations.

3.1.2 Mac OS X

Being a beginner with Macintosh systems, adding this section gave me the opportunity to be directly
confortable with this operating system. Actually, the installation process is quite different on Macintosh
systems than on Unix ones.

FEEL++ is working with many dependencies such as :
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Required packages Optional packages
g++ Superlu

Mpi : openmpi or mpich Suitesparse
Boost Metis
Petsc Trilinos

Cmake Google perftools
Libxml2 Paraview

Python

To make it easier, we used MACPORTS by creating a port for FEEL++ but furthers issue could still hap-
pened, so I had to explain how to fix them. The major concerns were linked with boost and mpi. When I
left the laboratory, FEEL++ was also working with the newest operating system Lion.

3.2 Tutorial

3.2.1 Getting started

This part intends to give users the basic tools to create elementary applications. The explanations and the
code was a bit outdated so I update these two parts to keep the manual up to date. In the tutorial, this part
provides a lot of code and exaplanations, you can find an extract in the appendix 6.3.

3.2.2 More meshes

As it stands, FEEL++ was able to load many meshes but essentially the Gmsh mesh file format. It provided
also some classes to manipulate .geo files and generate .msh files. We wanted to introduce new types
represented by medit meshes (.mesh format) which is very used in the scientific domain, and STL meshes
(format .stl) which are very used in stereolithography. To make it possible, I had to analyse the difference
between those formats and implement how to differentiate them.
To make it clear, GMSH is an automatic 3D finite element mesh generator with build-in pre- and post-
processing facilities. The standard for .msh file format is described in the appendix 6.2.

We were here interested in adding 2 new formats for FEEL++:

• Medit
A Medit reader is integrated into GMSH but this one is not fully compatible with our library, so many
improvements have to be done. The medit reader of GMSH is able to read medit meshes, the issue
comes from markers for areas of the edges were we want to apply different boundaries conditions.
GMSH is currently using the Physical Entities (physical line, area, volume). Unfortunetly, the medit
reader of Gmsh considers the physical flag as null. To make it possible, the Gmsh importer has to
be slightly modified. Once the modifications were brought, we were able to call our physical entities
to make calculation on it. Concretely, once the .msh mesh has been produced, we found the same
entities that were present on the .medit original mesh.

To be sure that our medit mesh was correctly read, double check has been realised. The first one
was easy : I have to see if Gmsh found the same entities in the .msh than in the .mesh. The second
one was to make calculation on it, so I applied the Gaussian theorem which states that∫

Ω

div(u) =

∫
∂Ω

u · n (3.1)

which means that the outward flux of a vector field through a closed surface is equal to the volume

integral of the divergence of the region inside the surface. So I choose a vector u =

 1
1
1

 because
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div(u) = 0. The check was consequently to calculate
∫
∂Ω

u · n, which is in FEEL++ language :

integrate( _range=boundaryfaces(mesh),
_expr=trans(vec(cst(1.),cst(1.),cst(1.)))*N() ).evaluate()(0,0);

I was pleased because I obtained the result 6.53344e− 12 which is what I expected.

• STL

We also add the stl files, those files are native to the stereolithography CAD software created by
3D Systems. These files describe only the surface geometry of a three dimensional object without
any representation of color, texture or other common attributes.

To use FEEL++ with stl files, a geo script has to be created to enable gmsh to remesh the file. The
stl file used must be a volume mesh. The script is very small, all informations to make one is on
Gmsh/slt section on their web site. Once it’s done, I just have to type

gmsh stl_file_name.geo -3

with stl_file_name.stl in the same directory. That command will produce the correct .msh
mesh that I could now use as usual without any modification in a FEEL++ application. Take a look
above how the remesh has produced a complete mesh with the file pelvis.stl and pelvis.geo:

Figure 3.1: Pelvis before remesh (stl) Figure 3.2: Pelvis after remesh (msh)
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CHAPTER 4

Heat sink application

In this section, we will consider in this section the performance of a heat sink designed for the thermal
management of high-density electronic components. The heat sink is comprised of a base/spreader which
in turn supports a number of plate fins exposed to flowing air. We model the flowing air through a simple
convection heat transfer coefficient. From the engineering point of view, this issue illustrates the conduc-
tion analysis of an important class of cooling problems: electronic components and systems.

Our interest is in the conduction temperature distribution at the base of the spreader. The target is to
study how the heat transfer occures with different parameters on our heat sink. The heat generated by high-
density electronic components is such that it’s very expensive to cool large structures (data center). The
cooling optimization is consequent in the financial race for decreasing operating costs. A classical thermal
CPU cooler looks like this

Figure 4.1: Mesh of a classical CPU cooler

I have considered a classical "radiator" which is a CPU heat sink. Those types of coolers are composed with
a certain number of plate fins exposed to flowing air or exposed to a ventilator. Regarding the periodicity
and geometry of our concern, I have made my study on a characteristical element of the problem : a half
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cell of a thermal fin of a heat sink with its spreader at the basis. Let’s take a look at the geometry of our
problem :

Figure 4.2: Geometry of a heat sink

The application would be parametrized, so the mesh I had to create had to be generated with FEEL++ thanks
to a simple header attached to the application. In that way I could add many inputs to my application to
parameterize it as I wanted. So I created the corresponding meshes in 2D or 3D. I applied what I have
learned with the .geo scripts and obtained :

Figure 4.3: 2D mesh Figure 4.4: 3D mesh

I was now able to start with the theory and write the equations I will have to code with the library.

4.1 Theory

My main interest here was the temperature, and every physical temperature has to obey to the heat equation.
To obtain the right output, I fixed furthers boundaries conditions linked with the heat sink concern. The
equations are :

2∑
i=1

κi∆T − ρiCi
∂T

∂t
= 0 (4.1)

κ1∇T · n = 0 on Γ2 and Γ6
(4.2)
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κ2∇T · n = 0 on Γ5,Γ7 and Γ8
(4.3)

κ1∇T · n = −h(T − Tamb) on Γ1
(4.4)

κ2∇T · n = Q(1− e−t) on Γ4
(4.5)

T|Ω1
= T|Ω2

on Γ3
(4.6)

κ1∇T · n = κ2∇T · n on Γ3
(4.7)

with i = 1 for the fin and i = 2 for the base and where κi is the thermal conductivity, ρi is the material’s
density (kg.m−3 in the SI unit), Ci the heat capacity and T the temperature at a precise point (in 2D or
3D). The corresponding diagrams are :

Figure 4.5: 2D geometry details

Starting from the equation and its boundaries conditions, I could make the calculation, which resuts in the
final equation that is coded :

h

∫
Γ1

vT +

2∑
i=1

ρiCi

∫
Ωi

v
Tn+1

δt
+ κi

∫
Ωi

∇v · ∇T =

∫
Γ4

vQ(1− e−t) + hTamb

∫
Γ1

v +

2∑
i=1

ρiCi

∫
Ωi

v
Tn

δt

(4.8)
The calculation details are described in the appendices at the page 27.

4.2 Implementation

I had to create a complete application, so I carried out what I have learned during the tutorial’s improve-
ments. I started by making an adimensional application but after furthers iterations between S.Veys and
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Figure 4.6: 3D geometry details

C.Prud’homme we decided to build a dimensional one. You can check all possible inputs in the appendices
on page 27

4.3 The results

Thanks to the GMSH exporter, we could observe in a nice way the results of the calculation. Here is an
example in 3D at the steady state considering that the heatsink is totally made in copper, with a heat flux
Q = 1e6 W.m−2 and a thermal coefficient h = 1e3. The figures 4.8 and 4.9 represent the temperature
evolution during the transient state, the graphics have been released thanks to OCTAVE :

Figure 4.7: Steady state: spreader and fin in copper, Q = 1e6 and h = 1e3
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Figure 4.8: Transient state on Γ4 Figure 4.9: Transient state on Γ1
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CHAPTER 5

Conclusion

It was my first internship in the computer science domain and it has been a really good experience for me.
This is a new step for my ingeneer graduation and this work has brought me several experiences that I’m
glad to have acquired. My work at the LJK is part of a strong desire to develop a complete and efficient
tool in applied mathematics. The stages of FEEL++ evolution make the library becoming more and more
functional. It is important to see how far we can push the limits.

First of all, I had a mutli scale role so I had to be able to handle multiple tasks at the time which could
be sometimes confusing but contributes to a personal satisfaction when the tasks are complete. These
challenges conforts me in the idea of becoming an ingeneer.

Most of all, I have worked with my superiors trusting, which is greatfull and made me feel safe in my work
progression. In my point of vue, that kind of feelings is an advantage for improving work progess.

Finally, this experience has given me a real insight of working life. The feedback about my work I could
have collected from my coworkers during my internship can only make me progress. I trully think that
practicing all the academic skills is necessary in order to acquire a solid formation.
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CHAPTER 6

Appendices

6.1 FEM tools

• Gradient
The gradient of a scalar field is a vector which points in the direction of the greatest rate of increase
of the scalar field. It’s a vector denoted ~grad, for a scalar function f(x1, ..., xn) we have :

−−→
gradf =

−→
∇f = (

∂f

∂x1
, ...,

∂f

∂xn
)

• Laplacian
The Laplacien is a differential operator obtained by making the divergence of the gradient of the
function. The usual symbol is ∆ and the Laplacien represents the sum of all the second partial
derivatives :

∆f =

N∑
i=1

∂2f

∂x2
i

• Divergence
The divergence is a vector operator which indicates the magnitude of a vector field’s source. It’s
a scalar-valued function which characterizes a stream of particles coming from somewhere (which
goes to the source or which comes from it). If the divergence is not equal to zero, that means there is
a concentration around a point (increasing or decreasing, depending on the sign). In 3D, the diver-
gence of a vector’s field ~F = (Fx, Fy, Fz) represents the scalar :

divF = ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

In the general case, we have :

∇ · F =

d∑
j=0

∂Fj
∂xj

where d is the dimension.
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• Vector spaces
Here is a classical vector space used in this document. Pk represents all real-valued polynomials of
total degree less or equal to k.

Pk = V ect(1, X, ...,Xk)

but it can also be writtent this way (in 1D)

Pk = {p(x) =
∑

0≤i≤k

aixi, ai ∈ R}

and this way (in 2D) :

Pk = {p(x1, x2) =
∑

0≤i+j≤k

aijx
i
1x
j
2, aij ∈ R}

6.2 Mesh

Finites elements examples
One dimension
The Lagrange finite element Pk can be formed of the segment K̂ = [0, 1], of P̂ = Pk and of Σ̂ such as
σ̂i(p̂) = p̂( ik ), 0 ≤ i ≤ k. The basis functions associated to thoses elements are the classical Lagrange
polynomials. Here are the degrees of freedom and the basis functions associated for k = 1, 2 and 3 :

Figure 6.1: Finite elements of Lagrange in 1D example
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Three dimensions
The Lagrange finite element Pk can be formed of the tetrahedron of summits a1, a2, a3 and a4 with re-
spective coordinates (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). The basis functions for k = 1 are given by
θ̂1 = 1 − x1 − x2 − x3, θ̂2 = x1, θ̂3 = x2 and θ̂4 = x3. Here are their representations and basis
functions associated :

Figure 6.2: Finite elements of Lagrange in 3D example

New mesh
FEEL++ is using GMSH to load, create and save meshes. To make it clear, GMSH is an automatic 3D finite
element mesh generator with build-in pre- and post-processing facilities. The standard for .msh file format
is as follow :

$MeshFormat
version-number file-type data-size
$EndMeshFormat
$Nodes
number-of-nodes
node-number x-coord y-coord z-coord
...
$EndNodes
$Elements
number-of-elements
elm-number elm-type number-of-tags < tag > ... node-number-list
...
$EndElements
$PhysicalNames
number-of-names
physical-dimension physical-number "physical-name"
...
$EndPhysicalNames
$NodeData
number-of-string-tags
< "string-tag" >
...
number-of-real-tags
< real-tag >
...
number-of-integer-tags
< integer-tag >
...
node-number value ...
...
$EndNodeData
$ElementData
number-of-string-tags
< "string-tag" >
...
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number-of-real-tags
< real-tag >
...
number-of-integer-tags
< integer-tag >
...
elm-number value ...
...
$EndElementData
$ElementNodeData
number-of-string-tags
< "string-tag" >
...
number-of-real-tags
< real-tag >
...
number-of-integer-tags
< integer-tag >
...
elm-number number-of-nodes-per-element value ...
...
$ElementEndNodeData

Medit
Here the section in which we are interested if number-of-tags. This number gives the number of integer
tags that follow for the n-th element. By default, the first tag is the number of the physical entity to which
the element belongs; the second is the number of the elementary geometrical entity to which the element
belongs; the third is the number of mesh partitions to which the element belongs, followed by the partition
ids (negative partition ids indicate ghost cells).

The medit reader of Gmsh is able to read medit meshes, the issue comes from markers for areas of the
edges were we want to apply different boundaries conditions. Gmsh is currently using the Physical Entities
(physical line, area, volume). Unfortunetly, the medit reader of Gmsh considers the physical flag as null.
To make it possible, the Gmsh importer has to be slightly modified. That is why the boolean param-
eter physical_are_elementary_regions has been introduced in the functions loadGMSHMesh and
createGMSHMesh. It acts on the visit of the mesh and if this boolean is true, instead of adding
__et[__i].push_back(__physical_region);
__et[__i].push_back(__elementary_region);

we have to add :
__et[__i].push_back(__elementary_region);
__et[__i].push_back(__elementary_region);

because the physical_region was considered as null.
Once the modifications have been made, we were able to call our physical entities to make calculation on
it. Concretely, once the .msh mesh has been produced, we found the same entities that were present on the
.medit original mesh.

6.3 Getting started

Extract from the tutorial section I wrote :

" In the example, we provide the options dt which takes an argument, a double and its default value
is 1 if the options is not set by the command line. Then we describe the application by defining a class
AboutData which will be typically used by the help command line options to describe the application
inline
AboutData
makeAbout()
{

AboutData about( "myapp" ,
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"myapp" ,
"0.1",
"my first Feel application",
AboutData::License_GPL,
"Copyright (c) 2008 Universite Joseph Fourier");

about.addAuthor("Christophe Prud’homme",
"developer",
"christophe.prudhomme@ujf-grenoble.fr", "");

return about;
}

Now we turn to the class MyApp itself: it derives from Feel::Application. This class provides two
constructors : one with only description and one with additionnal parameters which enables to add options
argc and argv. This class MyApp has to redefine the run() method. It is defined as a pure virtual function
in Application.
class MyApp: public Application
{
public:

/**
* constructor only about data and no options description
*/
MyApp( int argc, char** argv, AboutData const& );

/**
* constructor about data and options description
*/
MyApp( int argc, char** argv,

AboutData const&,
po::options_description const& );

/**
* This function is responsible for the actual work done by MyApp.
*/
void run();

};

The implementation of the constructors is usually simple, we pass the arguments to the super class
Application that will analyze them and subsequently provide them with a Feel::po::variable_map
data structure which operates like a map. Have a look at the document boost::program_options1 for
further details. Here our two constructors do nothing ( because {}).
MyApp::MyApp(int argc, char** argv,

AboutData const& ad )
:
Application( argc, argv, ad )

{}
MyApp::MyApp(int argc, char** argv,

AboutData const& ad,
po::options_description const& od )

:
Application( argc, argv, ad, od )

{}

The run() member function holds the application commands/statements. Here we provide the smallest
code unit: we print the description of the application if the --help command line options is set. "

1http://www.boost.org/doc/html/program_options.html
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6.4 Heat sink application

Equations
Here is the detail of the calculation with the finite element method. We apply the method by introducing
the test function v and we integrate the main equation, which reads now as :

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
− κi

∫
Ωi

v∆T = 0 (6.1)

We integrate by parts, which leads to :

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T − κi
∫
∂Ωi

(∇T · n)v = 0 (6.2)

then, by decomposing the borders ∂Ωi, we obtain :

−κ1

∫
Γ1

(∇T · n)v − κ2

∫
Γ4

(∇T · n)v − κ1

∫
Γ2,6

(∇T · n)v − κ2

∫
Γ5,7,8

(∇T · n)v +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T − κi
∫
∂Ωi∩Γ3

(∇T · n)v = 0 (6.3)

Now, we apply the conditions (4.2), (4.3), (4.4) and (4.5) which brings us to :∫
Γ1

hv(T − Tamb)−
∫

Γ4

vQ(1− e−t) +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T − κi
∫
∂Ωi∩Γ3

(∇T · n)v︸ ︷︷ ︸
=0 thanks to 4.7

= 0

(6.4)

Now we apply the boundary conditions (4.7) which results in :

h

∫
Γ1

v(T − Tamb)−
∫

Γ4

vQ(1− e−t) +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T = 0 (6.5)

We can now start to transform the equation by puting in the right hand the known terms :

h

∫
Γ1

vT +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T =

∫
Γ4

vQ(1− e−t) + hTamb

∫
Γ1

v (6.6)

We discretize
∂T

∂t
where δt is the time step, such as:

h

∫
Γ1

vT +

2∑
i=1

ρiCi

∫
Ωi

v
Tn+1 − Tn

δt
+ κi

∫
Ωi

∇v · ∇T =

∫
Γ4

vQ(1− e−t) + hTamb

∫
Γ1

v (6.7)

Finally we obtain :

h

∫
Γ1

vT +

2∑
i=1

ρiCi

∫
Ωi

v
Tn+1

δt
+ κi

∫
Ωi

∇v · ∇T =

∫
Γ4

vQ(1− e−t) + hTamb

∫
Γ1

v +

2∑
i=1

ρiCi

∫
Ωi

v
Tn

δt

(6.8)

Inputs
The following table displays the various fixed and variables parameters of this application.
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